Preliminary communication

SYNTHESE DE NOUVEAUX COMPOSES PERMETTANT L'ETUDE STEREO-CHIMIQUE DES PROCESSUS REACTIONNELS AU NIVEAU DE L'ATOME DE GERMANIUM: LES DIMETHYL-1,2 GERMACYCLOPENTANES

JACQUES DUBAC, PIERRE MAZEROLLES, MONIQUE JOLY et FREDERIQUE PIAU Laboratoire des Organométalliques, Université P. Sabatier, 118 route de Narbonne, 31077 Toulouse Cédex (France)

(Reçu le 29 décembre, 1976)

Summary

The synthesis of 1,2-dimethylgermacyclopentane is described. The geometric isomers, configurationally stable, are readily separable by spinning band distillation, and their reaction with ethylene, acetylene and 1-hexene proceeds with retention of configuration at the germanium atom.

The proposed configurations are supported by spectroscopic data (1 H and 13 C NMR).

A partir des composés I contenant un atome de germanium asymétrique, dans lesquels X est un atome d'hydrogène, d'halogène, de lithium ou un groupement fonctionnel oxygéné, azoté ou soufré, et R un radical méthyle, éthyle ou isopropyle, la stéréochimie de nombreuses reáctions de substitution au niveau de l'atome de germanium a été étudiée [1-8].

Comme nous l'avions suggéré lors de travaux antérieurs [9a, b] les méthyl-2 (ou 3) silacyclobutanes se prêtent à l'analyse stéréochimique des mécanismes réactionnels au niveau de l'atome de silicium [9c, d, 10-16]. Il en est de même dans la série du méthyl-2 silacyclopentane [17, 18] et du t-butyl-4 silacyclohexane [19].

Nous avons envisagé d'effectuer la synthèse du diméthyl-1.2 germacyclopentane (II, X = H), et de séparer les deux stéréoisomères Z et E qui peuvent conduire, grâce à des réactions stéréospécifiques sur la liaison Ge-H, à une grande variété de dérivés substitués du type II à stéréoisomère préférentiel.

La cyclisation bimoléculaire des dimagnésiens par les polyhalogénures de germanium constitue une voie d'accès aux germacycloalcanes à 5 ou 6 chamons [20, 21]. Le Schéma 1 rassemble les résultats obtenus à partir du dimagnésien du dibromo-1.4 pentane. Le tétrachlorure de germanium conduit à un mélange de divers composés, comme lors de la cyclisation du dimagnésien du dibromo-1,4 butane [20], qui, traité par LiAlH₄ fournit le méthyl-2 germacyclopentane (IV) avec un faible rendement (10% par rapport à GeCL). Les tribalogénures MeGeCl₁ (en solution dans l'éther) et PhGeCl₃ (en solution dans le benzène) donnent les germacyclopentanes V et VI avec un rendement de 20%, tandis que le diphényldibromogermane (en solution dans le benzène [21]) conduit au diphényl-1,1 méthyl-2 germacyclopentane (VII) avec un rendement de 45%. Le diméthyl-1,2 germacyclopentane (XI) est obtenu à partir de ce dérivé diphénylé après quatre réactions de substitution (Schéma 2) avant lieu chacune avec un rendement égal ou supérieur à 80%, et conduites selon une technique que nous avons déjà décrite [21].

La relation de configuration entre les isomères géométriques Z et E du diméthyl-1,2 germacyclopentane et ceux de ses dérivés substitués peut être aisément réalisée, comme en série silacyclobutanique [9, 13] et silacyclopentanique [17], d'après les positions relatives des signaux de résonance protonique des groupes méthyles liés à l'hétéroatome. Les diméthyl-1,2 germacyclopentanes du

SCHEMA 2

type II présentent deux centres asymétriques et peuvent exister sous la forme de deux couples de stéréoisomères Z et E. Les spectres de résonance protonique de ces dérivés montrent deux signaux entre δ 0 et 1 ppm (singulets pour VI, IX et X. doublets pour XI) dus aux protons GeMe, en position *cis* ou *trans* par rapport au groupement CMe, dans les deux isomères Z et E (Tableau 1).

Les voies de synthèse des Schémas 1 et 2 n'étant pas (ou trop peu) stéréosélectives, les isomères Z et E du diméthyl-1,2 germacyclopentane (XI) doivent être séparés sur colonne à bande tournante. La chromatographie en phase vapeur (colonne 20% SE 30/Chrom. W 60/80, 20' x 1/4'') confirme, comme dans le cas du diméthyl-1,2 silacyclopentane [17], la présence des deux stéréoisomères. Le spectre de RMN ¹H de l'isomère XIa, le moins retenu sur cette colonne, est caractérisé par un doublet GeMe à δ 0.22 ppm, et celui de l'autre isomère XIb par un doublet à δ 0.15 ppm. Le blindage réciproque de deux groupements

TABLEAU 1

POINTS D'EBULLITION ET PRINCIPALES CARACTERISTIQUES DE RESONANCE PROTONIQUE DES GERMACYCLOPENTANES PREPARES^a

Composé	Eb. (°C/mmHg)	δ(GeMe)	Composé	Eb. (°C/mmHg)	δ(GeMe)	
IV V(Z,E)	70/400 95—100/0.4	3.9; 4.0(m) ^c	XI-Z XI-E	} 78-82/200	0.15(d); 4.2(m) ^c 0.22(d); 4.0(m) ^c	
VI-2 VI-£	} 100-105/65	0.81(s) 0.75(s)	X11-2 X11-8	ь	0.17(s) 0.12(s)	
VII VIII(Z.E)	130/0.05 100105/0.08		XIII-Z XIII-E	ь	0.25(s) 0.20(s)	
IX-2 IX-E	} 85-90/2.4	0.49(s) 0.42(s)	XIV-Z XIV-B	Ъ	0.17(s) 0.12(s)	
Х- 2 Х-Е	} 82-88/20	0.93(s) 0.88(s)				

^aSpectres réalisés à 60 MHz ou à 100 MHz (XI) sur des produits en solution à environ 10% dans CCl₄ (VI, IX, X) ou C₄H₄ (IV, XI—XIV). Les déplacements chimiques sont exprimés en unité δ par rapport au TMS; s, singulet; d, doublet; m, massif. ^bManipulations effectuées sur quelques mg de substance et suivies par CPV et RMN, produits non distillés. ^c(GeH).

méthyles en position cis, portés par deux carbones adjacents, est un phénomène de RMN bien connu dans les cycloalcanes [22-24], qui permet d'attribuer les configurations respectives E et Z aux isomères XIa et XIb. Des travaux plus récents dans la série des méthylcyclopentanes [25] montrent que le blindage réciproque dû aux groupements méthyles dans le diméthyl-1,2 cyclopentane-Z, par rapport à l'isomère E, est encore plus important sur les spectres de résonance du ¹³C. Nous avons rassemblé dans le Tableau 2 ces données et les spectres de RMN du ¹³C des diméthyl-1,2 sila (et germa) cyclopentanes. Le silacyclopentane [26, 27] et le germacyclopentane [27-30] étant conformationnellement semblables au cyclopentane, la comparaison de ces spectres, essentiellement quant aux positions relatives des signaux des carbones des groupements méthyles, permet de confirmer l'attribution de configuration ci-dessus, ainsi que celle réalisée en série siliciée [17].

TABLEAU 2

DEPLACEMENTS CHIMIQUES DU ¹³C DANS LES DIMETHYL-1,2 CYCLOPENTANE [25]^a, DIMETHYL-1,2 SILACYCLOPENTANE ET DIMETHYL-1,2 GERMACYCLOPENTANE^b

Composé	δ(C(1))	δ(C(2))	δ(C(3))	δ(C(4))	δ(C(5))	δ(Me(1))	δ(Me(2))
Diméthyl-1,2							
cyclopentane-Z	37.7	37.7	33.3	23.3	33.3	15.2	15.2
Diméthyl-1,2							
cyclopentane-E	42.8	42.8	35.1	23.4	35.1	18.8	18.8
Diméthyl-1,2							
silacyclopentane-Z		17.3	37.3	25.4	11.0	-7.6	15.0
Diméthyl-1,2							
silacyclopentane-E		20.3	37.3	25.7	10.9	-5.0	16.9
Dimethyl-1,2							
germacyclopentane-Z		19.4	38.5	26.7	12.7	-8.6	16.4
Diméthyl-1,2							
germacyclopentane-E		22.7	38.5	26.9	12.7	-5.4	18.6

^aLes déplacements chimiques, donnés par rapport à C_{3} , sont corrigés ici par rapport au TMS ($\delta(CS_2) = 192.8 \text{ ppm}$). ^bSpectres réalisés à 15.08 MHz en découplage total, sur des produits en solution à environ 25% dans $C_{b}D_{b}$.

A titre d'exemple de réactions stéréospécifiques pouvant conduire à des dérivés du type II à stéréoisomère préférentiel, nous avons effectué l'hydrogermylation de l'éthylène et de l'acétylène par le germane XI enrichi en isomère E (Z/E 30/70) (Schéma 3).

Ces réactions, conduites en solution dans le benzène à la température ambiante en présence d'acide chloroplatinique, s'avèrent très stéréospécifiques, comme les réactions d'hydrogermylation du styrène, de l'heptène [8a] et du phénylacétylène [8b] par les germanes asymétriques I en présence de divers catalyseurs, et font intervenir la rétention de configuration de l'atome de germanium. Par ailleurs, nous avons noté que l'hexène-1 donne avec le germane XI (Z/E30/70) une réaction d'addition impliquant la même stéréochimie, aussi bien en présence de catalyseur que sous simple effet thermique ($100^{\circ}C$, 20 h), ce qui semble indiquer la stabilité configurationnelle du radical diméthyl-1,2 germacyclopentyle issu de la rupture homolytique de la liaison Ge-H. Corriu et Moreau [8b] ont fait une observation analogue quant à la stabilité optique d'un radical germanié asymétrique.

(XIII) (Z/E 70/30)

SCHEMA 3

Il est aisé de vérifier que les rapports d'isomères Z/E pour les composés XII, XIII et XIV ne sont pas des rapports thermodynamiques en réalisant les mêmes réactions d'hydrogermylation à partir d'un mélange d'isomères XI-Z et XI-E enrichi en isomère Z (Z/E 80/20). Le rapport d'isomères Z/E pour les produits XII, XIII et XIV est alors égal à 20/80.

Ces résultats préliminaires, tout en montrant la stabilité configurationnelle des isomères géométriques du diméthyl-1,2 germacyclopentane et de quelques dérivés substitués, laissent entrevoir de nouvelles possibilités d'études stéréochimiques en série organogermanique, les corrélations de configuration étant très faciles à réaliser dans ces nouveaux composés organométalliques.

Bibliographie

- 1 R.W. Bott, C. Eaborn et I.D. Varna, Chem. Ind. London, (1963) 614.
- 2 A.G. Brook et G.J.D. Peddle, J. Amer. Chem. Soc., 85 (1963) 1869.
- 3 F. Carre et R. Corriu, J. Organometal. Chem., 25 (1970) 395.
- 4 C. Eaborn, P. Simpson et I.D. Varna, J. Chem. Soc. A, (1966) 1133.
- 5 (a) C. Eaborn, B.E.E. Hill et P. Simpson, Chem. Commun., (1968) 1077; (b) id., J. Organometal. Chem., 37 (1972) 251; (c) id., ibid., 37 (1972) 257; (d) id., ibid., 37 (1972) 275.

- 6 C. Eaborn, R.E.E. Hill, P. Simpson, A.G. Brook et D.M. Macrae, J. Organometal. Chem., 65 (1968) 241.
- 7 F. Carré et R. Corriu, J. Organometal. Chem., 65 (1974) 343; id., ibid., 65 (1974) 349.
- 8 (a) R.J.P. Corriu et J.J.E. Moreau, J. Organometal. Chem., 40 (1972) 55; (b) id., ibid., 40 (1972) 73.
- 9 (a) J. Dubac, P. Mazerolles et B. Serres, Tetrahedron Lett., (1972) 525; (b) id., ibid., (1972) 3495; (c) id., Tetrahedron, 30 (1974) 749; (d) id., ibid., 30 (1974) 759.
- 10 J. Dubac, P. Mazerolles, B. Serres et M. Joly, C.R. Acad. Sci. Paris, Sér. C, 275 (1972) 1049.
- 11 D. Seyferth, H.-M. Shih, J. Dubac, P. Mazerolles et B. Serres, J. Organometal. Chem., 50 (1973) 39.
- 12 C.S. Cundy, M.F. Lappert, J. Dubac et P. Mazerolles, J. Chem. Soc. Dalton, (1976) 910.
- 13 B.G. McKinnie, N.S. Bhacca, F.K. Cartledge et J.Fayssoux, J. Amer. Chem. Soc., 96 (1974) 2637 et 6819.
- 14 F.K. Cartledge, J. Fayssoux et B.G. McKinnie, J. Organometal. Chem., 96 (1975) 15.
- 15 B.G. McKinnie et F.K. Cartledge, J. Organometal. Chem., 104 (1976) 407. 16 B.G. McKinnie, N.S. Bhacca, F.K. Cartledge et J. Fayssoux, J. Org. Chem., 41 (1976) 1534.
- 17 F.K. Cartledge, J.M. Wolcott, J. Dubac, P. Mazerolles et P. Fagoaga, Tetrahedron Lett., (1975) 3593.
- 18 J.M. Wolcott et F.K. Cartledge, J. Organometal. Chem., 111 (1976) C35.
- 19 H. Sakurai et M. Murakami, J. Amer. Chem. Soc., 94 (1972) 5080. 20 P. Mazerolles, Bull. Soc. Chim. Fr., (1962) 1907.
- 21 P. Mazerolles, J. Dubac et M. Lesbre, J. Organometal. Chem., 5 (1966) 35.
- 22 F.A.L. Anet, J. Amer. Chem. Soc., 84 (1962) 747.
- 23 H. Booth, Progr. Nucl. Magn. Reson. Spectrosc., 5 (1969) 149; Tetrahedron, 22 (1966) 615.
- 24 R.C. Fort et P. Schleyer, J. Org. Chem., 30 (1965) 789.
- 25 M. Christl, H.J. Reich et J.D. Roberts, J. Amer. Chem. Soc., 93 (1971) 3463.
- 26 J.R. Durig et J.N. Willis Jr., J. Mol. Spectrosc., 32 (1969) 320; J. Leane, J. Chem. Phys., 50 (1969) 1946; J. Durig, W.J. Lafferty et V.F. Kalinsky, J. Chem. Phys., 80 (1976) 1199.
- 27 H.M. Seip, J. Chem. Phys., 54 (1971) 440.
- E.C. Thomas et V.W. Laurie, J. Chem. Phys., 51 (1969) 4327.
 J.R. Durig et J.N. Willis Jr., J. Chem. Phys., 52 (1970) 6108.
- 30 J.R. Durig, Y.S. Li et L.A. Carreira, J. Chem. Phys., 58 (1973) 2393.